Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(43): 40087-40098, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929086

RESUMO

In the current energy crisis scenario, the development of renewable energy forms such as energy storage systems among the supercapacitors is an urgent need as a tool for environmental protection against increasing pollution. In this work, we have designed a novel 3D nanostructured silver electrode through an antireplica/replica template-assisted procedure. The chemical surface and electrochemical properties of this novel 3D electrode have been studied in a 5 M KOH electrolyte. Microstructural characterization and compositional analysis were studied by SEM, energy-dispersive X-ray spectroscopy, XRD technique, and Kripton adsorption at -198 °C, together with cyclic voltammetry and galvanostatic charge-discharge cycling measurements, Coulombic efficiency, cycle stability, and their leakage current drops, in addition to the self-discharge and electrochromoactive behavior, were performed to fully characterize the 3D nanostructured electrode. Large areal capacitance value of 0.5 F/cm2 and Coulombic efficiency of 97.5% are obtained at a current density of 6.4 mA/cm2 for a voltage window of 1.2 V (between -0.5 and 0.8 V). The 3D nanostructured silver electrode exhibits excellent capacitance retention (95%) during more than 2600 cycles, indicating a good cyclic stability. Additionally, the electrode delivers a high energy density of around 385.87 µWh/cm2 and a power density value of 3.82 µW/cm2 and also displays an electrochromoactive behavior. These experimental results strongly support that this versatile combined fabrication procedure is a suitable strategy for improving the electrochemical performances of 3D nanostructured silver electrodes for applications as micro-supercapacitors or in electrochemical devices.

2.
Nanomaterials (Basel) ; 8(8)2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30081591

RESUMO

Controlling functional properties of matter and combining them for engineering a functional device is, nowadays, a common direction of the scientific community. For instance, heterogeneous magnetic nanostructures can make use of different types of geometrical and compositional modulations to achieve the control of the magnetization reversal along with the nano-entities and, thus, enable the fabrication of spintronic, magnetic data storage, and sensing devices, among others. In this work, diameter-modulated FeNi nanowires are fabricated paying special effort to obtain sharp transition regions between two segments of different diameters (from about 450 nm to 120 nm), enabling precise control over the magnetic behavior of the sample. Micromagnetic simulations performed on single bi-segmented nanowires predict a double step magnetization reversal where the wide segment magnetization switches near 16 kA/m through a vortex domain wall, while at 40 kA/m the magnetization of the narrow segment is reversed through a corkscrew-like mechanism. Finally, these results are confirmed with magneto-optic Kerr effect measurements at the transition of isolated bi-segmented nanowires. Furthermore, macroscopic vibrating sample magnetometry is used to demonstrate that the magnetic decoupling of nanowire segments is the main phenomenon occurring over the entire fabricated nanowires.

3.
Inorg Chem ; 53(13): 6728-36, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24941448

RESUMO

We report the discovery of a new solid solution Gd2(Co3-xSix) with 0.29 < x < 0.50 in the Gd-Co-Si ternary system. Members of this solid solution crystallize with the La2Ni3-type structure and correspond to the stabilization of "Gd2Co3" through silicon substitution. The structure of the member Gd2(Co2.53(3)Si0.47) was determined by X-ray diffraction on a single crystal. It crystallizes with the space group Cmce and cell parameters a = 5.3833(4), b = 9.5535(6), and c = 7.1233(5) Å. Co/Si mixing is observed on two crystallographic positions. All compounds studied in the solid solution present a ferrimagnetic order with a strong composition-dependent Curie temperature TC with 280 K < TC < 338 K. The magnetocaloric effect, which amounts to around 1.7 J K(-1) kg(-1) for ΔH = 2 T, is interestingly tunable around room temperature over a temperature span of 60 K through only 4-5% of composition change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...